Radon decay products are the second cause of lung cancer after smoking. Therefore, a lot of dosimetric model has been built in to calculate the effective dose and effective depth dose in different region and tissues of human respiratory system. The first step of dose calculation is the deposition fraction estimation. Deposition fraction of radioactive aerosols in human respiratory system is mainly depending on their size. In this work, the activity size distributions of accumulated inhalable particles of 222Rn decay products (214Pb and 214Bi) are tested in indoor air.

EXPERIMENTAL METHODS AND DATA EVALUATION

A low-pressure Berner cascade-impactor is using as an aerosol sampler (size range of 70–6000nm). The measured attached activities of (214Pb and 214Bi) are associated with the aerosol particles of the accumulation mode (200 nm to 2000 nm).

Deposition Calculation

The principal criteria of the ICRP 66 model have been adopted in LUDEP 1 PC-software NRPB SR264, which predicts regional particle deposition in each lung compartment. Therefore, this program offers a useful means for determining the regional deposition probability functions in the human respiratory tract during different physical activities. The deposition probability functions were calculated for four selected activity levels (sleeping, sitting, light exercise and Heavy exercise) of an adult person when breathing takes place through the nose. The activity-related breathing parameters are shown in table 2.

We found that the deposition fraction is lower in the bronchi and increases with succeeding bifurcations of the human respiratory airways. This is may be due to the attached fraction of aerosol penetrate the upper part of the respiratory tract and deposited in the tracheobronchial (T-B) and pulmonary (P) regions. So that the deposition fraction of attached particles of radon decay product were high throughout the alveolar interstitial region. Attached particles are deposited in different parts of the pulmonary region (p) due to different sizes of aerosol particles. A significant factor that must be accounted for calculating the deposition profile of radon progeny within the respiratory tract is the typical variability or dispersion in size of the aerosol particles. Although unattached radon decay product fraction may be not more 10% in ambient air but it has a high deposition fraction depending on their size.